
KrySA Documentation
Release 0.3.7

Peter Badida

September 18, 2016

Contents

1 Contents 3
1.1 Getting started . 3
1.2 Project . 4
1.3 Task . 6
1.4 Contributing . 8
1.5 License . 9

2 Modules 11
2.1 KrySA . 11
2.2 KrySA » Tasks . 15
2.3 KrySA » Tests . 19

Python Module Index 21

i

ii

KrySA Documentation, Release 0.3.7

Statistical analysis for rats.

A common translation of the word “krysa” is “a rat”, mostly considered a lower creature, but in fact a really cute and
intelligent little rodent.

The idea behind KrySA is to make statistical software available even for the “rats” - people who can’t or don’t want
to buy a commercial tool for statistics for whatever reason. KrySA is a free, open-source tool that anyone can afford!

• KrySA is released under GNU GPL v3.0 License. Please read the LICENSE.txt file.

Contents 1

https://github.com/KeyWeeUsr/KrySA/blob/master/LICENSE.txt

KrySA Documentation, Release 0.3.7

2 Contents

CHAPTER 1

Contents

1.1 Getting started

Warning: KrySA is still in pre-alpha, most of the features are buggy or not yet supported. Read Contributing
section if you want to help speed up the process.

KrySA runs on Kivy framework, therefore it is possible to run it on any of available platforms for Kivy, mainly
Windows, Linux and Mac with all required packages correctly compiled:

• Kivy

• SciPy

• NumPy

• MatPlotLib

There’s no executable for KrySA yet, you’ll need to install it from source and run with Python until there is a release
available.

1.1.1 Minimum system requirements

RAM At least 256 MB
Disk space At least 400 MB free(*)
Resolution Minimum of 800 x 600
CPU ? ? ?
GPU Anything with OpenGL 2.0 support should be enough
Internet Necessary for downloading requirements and updating

*if installing from scratch

1.1.2 Installation

First of all you’ll need Python. To simplify the process use KivyInstaller on Windows, which will install Python
together with Kivy. On other platforms use Kivy Installation page as reference.

Note: KrySA requires the latest version of Kivy. It’s available either as daily-builds on ppa or as the .whl files
uploaded on Google Drive. If none of those are good, compile Kivy from source.

3

https://pypi.python.org/pypi/kivy
https://pypi.python.org/pypi/scipy
https://pypi.python.org/pypi/numpy/
https://pypi.python.org/pypi/matplotlib
https://python.org
https://github.com/KeyWeeUsr/KivyInstaller
https://kivy.org/docs/installation/installation.html

KrySA Documentation, Release 0.3.7

Then it gets a little bit harder with SciPy and NumPy because those need to be compiled and it sometimes doesn’t
work with Windows. For this case we will use already compiled packages in .whl files. You can find them either on
pypi or here. Choose packages for Python 2.7 (cp27). On Linux they should work without issues with pip install
<package>.

pip install <path to package>.whl

Then install MatPlotLib. This is easy even on Windows:

pip install matplotlib

1.1.3 Getting KrySA

There are many ways how to get it, but basically you need to download it from the official repository.

1. Pip

KrySA is available on PyPi, simply type:

pip install krysa

and then run it with:

python -m krysa

2. Git

Clone the whole repository and be able to update KrySA when a new version arrives with a simple git pull.

git clone https://github.com/KeyWeeUsr/KrySA

3. Zip

Click on the Clone or download button, download the zip file and unpack its contents.

When the repo clone(git/zip) of KrySA is ready, simply navigate into it and run:

python main.py

1.1.4 About docs

The documentation includes source with notes how most of the things work for example which widgets are connected,
what’s needed to call to make a custom Task and other related stuff.

Each documented class or function/method will have a little source link on the right side. This will send you to its
place in the code. In the code there are similar docs links (they’ll return you back) at the same place as it was for the
source in modules’ documentation.

1.2 Project

As it’s obvious from the title, the main part of the application is a Project which is a folder with a .krysa file and
some folders e.g. for Data and Results. You are forced to create a Project even with not being able to import data
alone. It keeps your work at one place and makes it simplier to Open and Save it.

Select File -> New -> Project, navigate to a folder you want to save it to and KrySA will create a <Project
name> folder there. Project’s name can have only lowercase & uppercase ASCII and numbers.

4 Chapter 1. Contents

https://anaconda.org/carlkl/packages
https://github.com/KeyWeeUsr/KrySA
https://pypi.python.org/pypi/krysa

KrySA Documentation, Release 0.3.7

Warning: Please do not manually edit any of the files, it may result in unexpected behavior and KrySA may
crash

1.2.1 Open and Save

Open

To open already existing Project select File -> Open Project and then navigate to a folder with .krysa file.
Select the file with a click or tap and press Open.

Save

Each new Project is automatically saved in the beginning with an empty Data file and already created folders. Please
do not remove any of them even if it’s nothing there.

To save changes made in a new Project select File -> Save Project, it will already know there’s an active
project and save it in the same folder without selecting where to save it.

Note: If there’s no active project, saving does nothing.

1.2.2 Data file

KrySA creates a single .sqlite file which handles all the Data you create. Although SQLite doesn’t limit its
columns by default, KrySA uses this option to prevent crashing caused by a user’s mistake of running a Task expecting
only numbers with a value of type TEXT.

Data

In the beginning there’s an empty Data file, which means we need to populate it.

Select File -> New -> Data and name it. Data’s name can have only lowercase & uppercase ASCII and num-
bers. Then create columns (same rules for the names) and input new values to them. Remember, for each column you
have to select a type of its values:

Type Description
REAL Only numbers with a single . symbol (1.1)
INTEGER Only numbers without any special symbols
TEXT Non-limited value converting input directly to unicode

Note: When an input box for the first value is added, the type of the column automatically locks to prevent values of
different type in the single column e.g. REAL and TEXT.

Warning: Each column must have a unique name!

After the column is finished, you can Check & Lock the values. It’ll check if the values are the same as the column
type and tell you if not. You can always unlock the values later for example if the application tells you about wrong
values. When you’re finished, type Run, it’ll run Check & Lock for each available column. If all the columns pass

1.2. Project 5

KrySA Documentation, Release 0.3.7

the test, a new tab after the Process Flow tab is created and then the application export every present data to the Data
file.

Each column in finished Data has an address you can access it later with in a Task.

Editing

Each cell in Data is clickable and editable in the limits of the column type. Press <enter> (<return>) to confirm
the edit, otherwise it won’t change the value and only unfocus the cell.

Note: Edited cells aren’t automatically saved to Data file, how to save read in Open and Save.

Importing

Whenever you want to combine data from two or more Project s or just add additional tables from premade Data file,
this is the way.

Select File -> Import Data, navigate to .sqlite file, select it with a click or tap and press Import. It will
add another tab(s) containing the data at the end of the panel.

Warning: Before importing check if the column names don’t collide, otherwise it may result in unexpected
behavior and KrySA may crash.

Exporting

This will export all data you can see on the panel to a Data file which can be then accessed either with different editor
or saved for later use in KrySA e.g. for combining data.

Select File -> Export Data, navigate to a folder you want to put the Data file to, select it with a click or tap
and press Export.

1.2.3 Results

Results are by default .png files in a resolution of 72DPI A4 page (595px x 842px) put in the results folder in the
Project folder.

Note: Making a single file with all results is still under construction.

1.2.4 Process Flow

Nothing yet.

1.3 Task

This is the most important part of KrySA, it is the way of manipulating Data values and reporting the result. Tasks are
categorized by its purpose and/or complexity into different groups e.g. Basic.

6 Chapter 1. Contents

KrySA Documentation, Release 0.3.7

1.3.1 Using a Task

Each Task needs values which it can use, otherwise it won’t run. When the values are present, each column has an
address starting with A for the first column. To select more than a single value, use : character (e.g. B1:AB2):

. A B C ... AA AB AC ... ZZ...
1 x x x x x
2 x x x x x

After the values are selected, pres Run. Depending on the Task, it can create new Data or a page in the Results panel.

1.3.2 Create a Task

Note: It’s good to peek in tasks.Task.

KrySA uses Python for Task s. Each task according to its category(file) begins with a function named like this:

def <category>_<task>(*args):

This function sets the layout that is put into the Task popup, sets a function that is called when user selects some
options in the popup and opens it. The Task s layout contains an option to select which Data will be used in the
following task, but you have to handle user’s input of the address(A1:B2).

def <category>_<task>(*args):
widget = SomeLayout()
task = Task(title='Title', wdg=widget,

call=['Title', <category>_<task>])
task.run = partial(<called function>,

task,
<widget containing address>)

It’s necessary to put into Task() the layout and a link to itself. Layout then can be accessed in the called function
directly from arguments and the link is used to append the used Task to list of Recent Tasks.

Then it’s necessary to write the <called function> and handle its inputs. Each Task must have some kind of
output - new Data, modified Data or a page in the Results:

def <called_function>(task, address, *args):

Each <called function> takes at least two arguments task and address, where task is an instance of the
main popup (so that you can access the chosen Data) and address is the widget with some kind of string property.

To get the values from user’s input use the function task.from_address(), which is basically Body.from_address()
accessed from within Task. The function takes two arguments - index of Data (returned in task.tablenum property)
and string of address.

values = task.from_address(task.tablenum, address.text)

Values are returned as a simple list of everything selected no matter what the type it is. Example:

values = [0, 1.0, u'hi']
max(values)
>>> u'hi'

When you are finished, output the values e.g. into Results with task.set_page:

1.3. Task 7

KrySA Documentation, Release 0.3.7

task.set_page('Count', str(len(values)), 'text')

Final functions would look like this:

def basic_count(*args):
widget = CountLayout()
task = Task(title='Count', wdg=widget,

call=['Count', basic_count])
task.run = partial(_basic_count,

task,
task.ids.container.children[0].ids.name)

task.open()

def _basic_count(task, address, *args):
values = task.from_address(task.tablenum, address.text)
task.set_page('Count', str(len(values)), 'text')

1.4 Contributing

There are three parts of the project you can contribute to, but only two of them require at least some programming
skills (mainly in Python). Each part, however, requires a fully functional KrySA application.

1.4.1 Documentation

As the project is still in the beginning, there’s a lot of things to document and to make screenshots of. If you have
KrySA already installed, there’s a docs folder that contains the documentation.

The documentation is written in reStructuredText which you can test either in some online editor (referencing files
won’t work, obviously) or localy if you have already installed Python. KrySA uses Sphinx for converting reStruc-
turedText to a html website. First install requirements from the .txt file.

pip install -r docs-requirements.txt

To build the documentation use these commands in the docs folder:

make clean && make html

Note: Extend the command with another && to e.g. automatically open a browser with fresh index.html file.

Please don’t break the formatting (max 79 characters in a single line) and fix the errors if any jumps out in Sphinx
build.

1.4.2 Statistics

Hypotesis testing, factor analysis, averages, whatever part of statistics you think a user could find useful you can do
two things:

1. Feature request

Open an issue in the GitHub repository describing the feature and its use case.

8 Chapter 1. Contents

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
https://sphinx-doc.org

KrySA Documentation, Release 0.3.7

2. Pull request

Read the code, find out how it works and make a pull request to the GitHub repository with code that doesn’t
break the Test Suite together with an example of how the new feature works.

1.4.3 Application

If you think the application might find your feature useful or that some behavior needs a fix, you are welcome to make
a pull request. Before each pull make sure it is written in Python’s PEP8 style and that it doesn’t break the Test Suite.
KivyUnitTest makes running the tests easier.

1.5 License

1.5.1 The Software

KrySA is released under the GNU General Public License (GPL, or “free software”).

This license grants people a number of freedoms:

• You are free to use KrySA, for any purpose

• You are free to distribute KrySA

• You can study how KrySA works and change it

• You can distribute changed versions of KrySA

The GPL strictly aims at protecting these freedoms, requiring everyone to share their modifications when they also
share the software in public. That aspect is commonly referred to as Copyleft.

1.5.2 License details

The developed KrySA source code is by default licensed as GNU GPL Version 3.

KrySA also uses some modules/libraries from other projects. For example Python uses the Python License, Kivy uses
the MIT License, SciPy and NumPy use the 3-clause BSD License, and MatPlotLib uses a license based on Python
License.

All the components that together make KrySA are compatible under the GNU GPL Version 3. That is also the license
to use for any distribution of KrySA binaries.

1.5.3 Your output

What you create with KrySA (e.g. Data file or Results) is your sole property. All your other output, meaning im-
ages/graphs, tables, etc. including the .krysa files and other data files Krysa can write, is free for you to use as you
like.

That means the application can be used commercially by anyone to work on commercial projects, research, or for
educational purposes.

KrySA’s GNU GPL license guarantees you this freedom. Nobody is ever permitted to take it away, in contrast to trial
or “educational” versions of commercial software that will forbid your work in commercial situations.

1.5. License 9

https://github.com/KeyWeeUsr/KrySA/tests
https://pypi.python.org/pypi/pep8
https://github.com/KeyWeeUsr/KrySA/tests
https://github.com/KeyWeeUsr/KivyUnitTest
https://hg.python.org/cpython/file/tip/LICENSE
https://github.com/kivy/kivy/blob/master/LICENSE
https://github.com/scipy/scipy/blob/master/LICENSE.txt
https://github.com/numpy/numpy/blob/master/LICENSE.txt
https://github.com/matplotlib/matplotlib/blob/master/license.py
https://github.com/matplotlib/matplotlib/blob/master/license.py

KrySA Documentation, Release 0.3.7

10 Chapter 1. Contents

CHAPTER 2

Modules

• Index

2.1 KrySA

class main.Body(**kw)
The main layout for the application. It handles menu values, their appropriate functions, filtering of user’s input
and functions for accessing Data file in main.Table.

New in version 0.1.0.

_export_data(selection, fname, *args)
Exports all available Data (visible as tabs) as Data file into path selected in Dialog.

New in version 0.1.1.

static _extract_rows(data)
Extract values from main.Table‘s dictionary into a flat list.

Example:

Data1 Data2 Data3
1 2.0 3

[u’Data1’, u’Data2’, u’Data3’, u‘1’, 2.0, 3, ...]

New in version 0.1.0.

_import_data(selection, *args)
Imports Data file from path selected in Dialog and puts it to main.Table.

New in version 0.1.0.

_new_data(*args)
Opens a wizard for creating a new Data if a Project is available or shows a warning if it doesn’t exist.

New in version 0.1.3.

_new_project(*args)
Closes already opened Project if available and opens a dialog for creating a new one.

New in version 0.1.2.

_open_project(selection, *args)
Opens a Project from path selected in Dialog and imports Data file.

New in version 0.1.7.

11

KrySA Documentation, Release 0.3.7

_save_data(wizard, *args)
Gets data from the wizard, puts them into main.Table and exports them into Data file.

New in version 0.1.4.

_save_project(selection=None, fname=None, *args)
Saves a Project to path selected in Dialog and exports Data file.

New in version 0.1.2.

static about(*args)
Displays about page of the app and includes other credits.

New in version 0.1.0.

close_project(*args)
Clears all important variables, removes all Data available in main.Table and switches to
main.ProcessFlow .

New in version 0.1.0.

from_address(table, address, extended=False, *args)
Gets value(s) from main.Table according to the address such as A1 or A1:B2. Values are fetched in
the way that the final list contains even empty (u’’) values. It is not expected of user to use Task for
strings and most of them won’t even run. To get non-empty values for a Task use for example Python’s
filter():

values = filter(lambda x: len(str(x)), values)

This filter, however, will remain values such as None untouched.

New in version 0.1.0.

Changed in version 0.3.5: Added extended options and a possibility to get :all values from data.

new(button, *args)
Opens a submenu for New menu.

New in version 0.1.0.

set_page(task, result, result_type=’text’, footer=’time’)
Creates a main.PageBox for a result. The header consists of the Task‘s name, the footer is by default the
time when the result was created and the content depends on result_type which can be - text, image(path to
image) or widget. If result_type == ‘widget’, result has to be an instance of a widget (obviously containing
the output), e.g.:

b = Button(text='my output')
set_page('MyTask', b, result_type='widget')

Note: When exporting pages, everything is converted into images (pngs), therefore making fancy behav-
ing widgets is irrelevant.

New in version 0.2.0.

Changed in version 0.3.2: Added tables as a result type.

class main.CreateWizard(**kw)
A popup handling the behavior for creating a new Data, i.e a wizard.

New in version 0.1.3.

12 Chapter 2. Modules

KrySA Documentation, Release 0.3.7

class main.Dialog(**kw)
A dialog handling the behavior for creating or opening files e.g. Project or Data.

New in version 0.1.0.

class main.ErrorPop(**kw)
An error popup to let user know something is missing or typed wrong when console is disabled.

New in version 0.1.2.

class main.ImgButton(**kwargs)
A button with an image of square shape in the middle.

New in version 0.2.0.

class main.KrySA(**kwargs)
The main class of the application through which is handled the communication of other classes with getting an
instance of the app via App.get_running_app().

Other than that, it holds important variables of Project, sql blacklist for Data file creating and updating or the
application properties themselves.

build()
Default Kivy function for getting the root widget of application.

errorcls
alias of ErrorPop

on_project_exists(instance, exists)
Checks change of main.KrySA.project_exists and if Project exists, schedules updating of its tree
to 5 second interval.

New in version 0.3.0.

tablecls
alias of Table

class main.MenuDrop(**kw)
A list of main.SizedButton s displayed as a menu, where each button may create another menu depending
on the function bound to it. The main menu is handled through a single instance of main.MenuDrop which
is instantiated before main.Krysa.build function.

Each click/tap on the menu button then assigns a value to it from App.menu dictionary according to its name
in kv file.

New in version 0.1.0.

class main.NewDataColumn(**kw)
A layout handling the behavior of type, values(NewDataValue) and some buttons for each new column in
Data.

New in version 0.1.4.

checklock(disable, coltype, check, *args)
Disables all cells in the column, then check them against a list of strings that could be used to corrupt Data
file . If the check is done without an error, another check is made to protect against using an empty string
’’ as a value, which if used inappropriately results in a crash.

New in version 0.1.4.

static free(items)
Frees all locked cells in the column except a column type. If a wrong type is used, removing the whole
column is necessary. (protection against corrupting Data file)

2.1. KrySA 13

KrySA Documentation, Release 0.3.7

New in version 0.1.4.

paste(values, sep)
Paste a value(s) from a user’s clipboard as a column values. A user can choose what kind of separator was
used on the values, for example:

1 2 3 4 5 # (space)
1\t2\t3\t4\t # (tab)
1\n2\n3\n4\n # Unix-like new line character (<enter>/<return>)

If in doubt and your values were copied from a column (e.g. spreadsheet), use OS default, which will
choose between \n (Unix-like) or \r\n (Windows) new line separators.

New in version 0.3.4.

class main.NewDataLayout(**kw)
A layout handling the behavior of NewDataColumn and some inputs for each new value in Data.

New in version 0.1.3.

class main.NewDataValue(**kw)
A layout handling the behavior of inputs and button for each new value in Data.

New in version 0.1.4.

class main.PageBox(**kwargs)
A layout that includes Page widget together with transparent separator. It’s used for adding new results from
Tasks.

New in version 0.2.0.

class main.PaperLabel(**kwargs)
A label with visual properties as a paper sheet.

New in version 0.2.0.

class main.ProcessFlow(**kw)
A canvas on which will be displayed actions for each Data related to them, such as used tasks connected with
result of the tasks.

New in version 0.1.0.

(Not implemented yet)

class main.ResultGrid(**kwargs)
A black gridlayout, together with main.Wrap makes a table container for results that need a table.

New in version 0.3.2.

class main.SideItem(**kwargs)
Supposed to be a part of settings, most likely will be removed/replaced.

New in version 0.1.0.

class main.SizedButton(**kwargs)
A button with width automatically customized according to text length of its siblings, which makes every sibling
the same size as the one with the longest text string.

New in version 0.1.0.

class main.Table(**kw)
A view handling the behavior of the inputs from Data file. Separates the values from Data file according to its
Data‘s column types into three Python categories - int, float or unicode and assigns an alphabetic order for each
column together with row number to each value.

14 Chapter 2. Modules

KrySA Documentation, Release 0.3.7

New in version 0.1.0.

clean(*args)
Removes all data from main.Table

New in version 0.1.0.

get_letters()
Gets a list of letters the same length as Data‘s columns.

New in version 0.1.0.

lock(disabled=True)
docs

New in version 0.1.0.

class main.TableItem(**kwargs)
An item handling the behavior or each separate value in the main.Table such as updating/editing values in
Data.

New in version 0.1.0.

on_focus(widget, focused)
Makes sure the unconfirmed value is discarded e.g. when clicked outside of the widget.

update_value(txt, *args)
On <enter> (return) key updates the values main.TableItem.text and
main.TableItem.old_text in main.Table.

New in version 0.1.0.

class main.Wrap(**kwargs)
A white label with automatically wrapped text.

New in version 0.3.2.

2.2 KrySA » Tasks

2.2.1 KrySA » Tasks » Basic

class tasks.basic.Basic
All Task s categorized as basic under one roof.

New in version 0.1.0.

static _basic_count(task, address, *args)
Gets the values from address and returns the count.

New in version 0.1.0.

static _basic_freq(task, address, bins, limits, freq_type, intervals, *args)
Gets the values from address and depending on the type of values dumps them either into bins of size 1
(integers) or into bins that consist of intervals (real numbers). Then according to the size of bins and limits
of the frequency creates a table for chosen types of frequency.

May return a warning if intervals option isn’t checked for values containing real numbers:

IndexError: index max(<values>) + 1> is out of bounds for axis 1
with size max(<values>) + 1>

New in version 0.3.2.

2.2. KrySA » Tasks 15

KrySA Documentation, Release 0.3.7

static _basic_large(task, address, k, *args)
Gets the values from address and returns the k-th value from the descending list of sorted values.

New in version 0.1.0.

static _basic_max(task, address, *args)
Gets the values from address and returns a maximum.

New in version 0.1.0.

static _basic_min(task, address, *args)
Gets the values from address and returns a minimum.

New in version 0.1.0.

static _basic_small(task, address, k, *args)
Gets the values from address and returns the k-th value from the ascending list of sorted values.

New in version 0.1.0.

basic_count(*args)
Opens a tasks.Task with a tasks.AddressLayout that gets from user Data address.

New in version 0.1.0.

basic_countifs(*args)
Not yet implemented.

basic_freq(*args)
(Not fully tested yet) Opens a tasks.Task with a tasks.FreqLayout that gets from user:

•Data address

•type of values (interval for real numbers)

•type of frequency (absolute, relative or cumulative

•number of bins (optional)

•upper and lower limit (optional)

New in version 0.3.2.

basic_large(*args)
Opens a tasks.Task with a tasks.SmallLargeLayout that gets from user Data address and k
variable representing the k-th value from the Task s output.

New in version 0.1.0.

basic_max(*args)
Opens a tasks.Task with a tasks.AddressLayout that gets from user Data address.

New in version 0.1.0.

basic_min(*args)
Opens a tasks.Task with a tasks.AddressLayout that gets from user Data address.

New in version 0.1.0.

basic_small(*args)
Opens a tasks.Task with a tasks.SmallLargeLayout that gets from user Data address and k
variable representing the k-th value from the Task s output.

New in version 0.1.0.

16 Chapter 2. Modules

KrySA Documentation, Release 0.3.7

2.2.2 KrySA » Tasks » Avgs

class tasks.avgs.Avgs
All Task s categorized as averages under one roof.

New in version 0.2.4.

static _avgs_gen(task, address, p, *args)
Gets the values from address and depending on p (power) value returns either exceptional case for p == 0
(geometric mean), or value from the generalized mean’s formula.

New in version 0.2.4.

avgs_gen(*args)
Generalized mean:

(︀ 1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑝
𝑖

)︀ 1
𝑝 , 𝑤ℎ𝑒𝑟𝑒 :

•p == -1: harmonic

•p == 0: geometric

•p == 1: arithmetic

•p == 2: quadratic

•p == 3: cubic

•etc...

New in version 0.2.4.

avgs_inter(*args)
(Not yet implemented)

avgs_median(*args)
(Not yet implemented)

avgs_mid(*args)
(Not yet implemented)

avgs_mode(*args)
(Not yet implemented)

avgs_trim(*args)
(Not yet implemented)

2.2.3 KrySA » Tasks » Manipulate

class tasks.manipulate.Manipulate
All Task s categorized as being able to manipulate data. A result after manipulation is a new data.

New in version 0.3.5.

static _manip_append(task, append_type, amount, overwrite, *args)
Gets the amount of empty rows / cols to append from user and either returns a new, altered main.Table
of selected one, or appends directly to the selected Table.

New in version 0.3.6.

Changed in version 0.3.7: Added overwriting of selected main.Table

2.2. KrySA » Tasks 17

KrySA Documentation, Release 0.3.7

static _manip_sort(task, sort_type, *args)
Gets the values from address, sorts each column either ascending or descending and returns a new
main.Table

New in version 0.3.5.

manip_append(*args)
Opens a tasks.Task with a tasks.AppendLayout that gets from user main.Table, type of
append and an amount of empty rows / cols to append.

Note: Appending new columns don’t work for now. When such an action is possible, this note will be
removed.

New in version 0.3.6.

manip_filter(*args)
(Not yet implemented)

manip_merge(*args)
(Not yet implemented)

manip_sort(*args)
Opens a tasks.Task with a tasks.SortLayout that gets from user the table which will be sorted
and the type of sorting (Ascending or Descending).

New in version 0.3.5.

manip_split(*args)
(Not yet implemented)

class tasks.AddressLayout(**kwargs)
Simple layout that consists of single restricted input widget fetching only [a-zA-Z0-9:] values i.e. address.

class tasks.AppendLayout(**kwargs)
A layout that consists of a spinner with two values:

•Rows

•Columns

and a restricted input that allows only integers.

New in version 0.3.6.

class tasks.AvgsLayout(**kwargs)
A layout that consists of multiple restricted input widgets for address and p (power) value for the formula of
generalized mean.

New in version 0.2.4.

floatfilter(substring, from_undo)
A function filtering everything that is not - symbol, floating point symbol(.) or a number.

class tasks.FreqLayout(**kwargs)
A layout that consists of multiple checkboxes and restricted input widgets for address, type of values, type of
output frequency and limits of the input values.

New in version 0.3.2.

class tasks.SmallLargeLayout(**kwargs)
A layout that consists of multiple restricted input widgets for address and k value.

New in version 0.1.0.

18 Chapter 2. Modules

KrySA Documentation, Release 0.3.7

class tasks.SortLayout(**kwargs)
A layout that consists only of a spinner with two values:

•Ascending

•Descending

The Task with this layout is using tasks.manipulate.Manipulate._manip_sort.

New in version 0.3.5.

class tasks.Task(**kw)
A popup handling the basic choosing of Data from available Data file in the application.

New in version 0.1.0.

Changed in version 0.2.3: Placed into a separated module.

static get_table_pos(text, values, *args)
Returns an index of selected main.Table from all available in the list.

New in version 0.1.0.

recalc_height(body, content)
Recalculates the height of tasks.Task after a layout is added, so that the children are clearly visible
without any stretching.

New in version 0.3.2.

try_run(*args)
Tries to run a Task from the input a user specified and closes the popup. If no such an action is possible,
it’ll show a popup with an error and leave tasks.Task opened.

New in version 0.2.0.

2.3 KrySA » Tests

Tests run independently on each other, but not in a single python interpreter. After each test a fresh python is required
(it won’t run as casual suite), so either run them like this one by one:

python test_<something>.py

or use KivyUnitTest to do it instead of you and better.

2.3. KrySA » Tests 19

https://github.com/KeyWeeUsr/KivyUnitTest

KrySA Documentation, Release 0.3.7

20 Chapter 2. Modules

Python Module Index

m
main, 11

t
tasks, 15
tasks.avgs, 17
tasks.basic, 15
tasks.manipulate, 17
tests, 19

21

KrySA Documentation, Release 0.3.7

22 Python Module Index

Index

Symbols
_avgs_gen() (tasks.avgs.Avgs static method), 17
_basic_count() (tasks.basic.Basic static method), 15
_basic_freq() (tasks.basic.Basic static method), 15
_basic_large() (tasks.basic.Basic static method), 15
_basic_max() (tasks.basic.Basic static method), 16
_basic_min() (tasks.basic.Basic static method), 16
_basic_small() (tasks.basic.Basic static method), 16
_export_data() (main.Body method), 11
_extract_rows() (main.Body static method), 11
_import_data() (main.Body method), 11
_manip_append() (tasks.manipulate.Manipulate static

method), 17
_manip_sort() (tasks.manipulate.Manipulate static

method), 17
_new_data() (main.Body method), 11
_new_project() (main.Body method), 11
_open_project() (main.Body method), 11
_save_data() (main.Body method), 11
_save_project() (main.Body method), 12

A
about() (main.Body static method), 12
AddressLayout (class in tasks), 18
AppendLayout (class in tasks), 18
Avgs (class in tasks.avgs), 17
avgs_gen() (tasks.avgs.Avgs method), 17
avgs_inter() (tasks.avgs.Avgs method), 17
avgs_median() (tasks.avgs.Avgs method), 17
avgs_mid() (tasks.avgs.Avgs method), 17
avgs_mode() (tasks.avgs.Avgs method), 17
avgs_trim() (tasks.avgs.Avgs method), 17
AvgsLayout (class in tasks), 18

B
Basic (class in tasks.basic), 15
basic_count() (tasks.basic.Basic method), 16
basic_countifs() (tasks.basic.Basic method), 16
basic_freq() (tasks.basic.Basic method), 16
basic_large() (tasks.basic.Basic method), 16

basic_max() (tasks.basic.Basic method), 16
basic_min() (tasks.basic.Basic method), 16
basic_small() (tasks.basic.Basic method), 16
Body (class in main), 11
build() (main.KrySA method), 13

C
checklock() (main.NewDataColumn method), 13
clean() (main.Table method), 15
close_project() (main.Body method), 12
CreateWizard (class in main), 12

D
Dialog (class in main), 12

E
errorcls (main.KrySA attribute), 13
ErrorPop (class in main), 13

F
floatfilter() (tasks.AvgsLayout method), 18
free() (main.NewDataColumn static method), 13
FreqLayout (class in tasks), 18
from_address() (main.Body method), 12

G
get_letters() (main.Table method), 15
get_table_pos() (tasks.Task static method), 19

I
ImgButton (class in main), 13

K
KrySA (class in main), 13

L
lock() (main.Table method), 15

M
main (module), 11

23

KrySA Documentation, Release 0.3.7

manip_append() (tasks.manipulate.Manipulate method),
18

manip_filter() (tasks.manipulate.Manipulate method), 18
manip_merge() (tasks.manipulate.Manipulate method),

18
manip_sort() (tasks.manipulate.Manipulate method), 18
manip_split() (tasks.manipulate.Manipulate method), 18
Manipulate (class in tasks.manipulate), 17
MenuDrop (class in main), 13

N
new() (main.Body method), 12
NewDataColumn (class in main), 13
NewDataLayout (class in main), 14
NewDataValue (class in main), 14

O
on_focus() (main.TableItem method), 15
on_project_exists() (main.KrySA method), 13

P
PageBox (class in main), 14
PaperLabel (class in main), 14
paste() (main.NewDataColumn method), 14
ProcessFlow (class in main), 14

R
recalc_height() (tasks.Task method), 19
ResultGrid (class in main), 14

S
set_page() (main.Body method), 12
SideItem (class in main), 14
SizedButton (class in main), 14
SmallLargeLayout (class in tasks), 18
SortLayout (class in tasks), 18

T
Table (class in main), 14
tablecls (main.KrySA attribute), 13
TableItem (class in main), 15
Task (class in tasks), 19
tasks (module), 15
tasks.avgs (module), 17
tasks.basic (module), 15
tasks.manipulate (module), 17
tests (module), 19
try_run() (tasks.Task method), 19

U
update_value() (main.TableItem method), 15

W
Wrap (class in main), 15

24 Index

	Contents
	Getting started
	Project
	Task
	Contributing
	License

	Modules
	KrySA
	KrySA » Tasks
	KrySA » Tests

	Python Module Index

